The Chinese University of Hong Kong, Faculty of Medicine, Department of Microbiology Joint Graduate Student Seminar

## Nanocoatings for Preventing Biofilm formation on Medical devices

Supervisor: Prof. Mamie Hui

Student: Poon Yeuk Lan, Nana (PhD student, Yr7)

Date: 14th December 2021

### Outline

#### Introduction

#### Nanocoatings

- Antifouling coatings
  - Hydrophilic polymers
  - Zwitterionic polymers
  - Superhydrophobic surface
- Antimicrobial coatings
  - Metal-based nanoparticles
  - Cationic polymers
- Limitations

#### Summary

#### Introduction

#### Modes of growth of microorganisms



- Biofilm
  - "A structured community of bacterial cells enclosed in a selfproduced polymeric matrix, adherent to a surface." (Costerton et al., 1999)



### Formation of biofilm



#### ADHESION

N

Reversible adhesion to biotic or abiotic surface

#### (Fig 1, Maali et al., 2020)

#### MICROCOLONY

Irreversible adhesion caused by ECM production and cell aggregation

#### MATURATION

Biofilm growth leading to 3D structures with metabolic heterogeneity

#### DISPERSION

Detachement signals leading to degrading enzymes and surfactants expression. Planktonic cells are released in the environnement

### Introduction

- Clinically relevant, biofilm forming microorganisms
  - Gram positive bacteria
    - Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus viridans
  - Gram negative bacteria
    - Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa
  - Fungi
    - Candida spp.
- Biofilms accounted for up 80% of microbial infections

### Introduction

- Device-associated infections
  - Accounted for 25.6% of health care-associated infections (Magill et al., 2014)
  - Usually associated with microbial colonization on indwelling and prosthetic medical devices
  - Related to colonization of microorganisms on surface of implants
    - Implant as substrate for colonization and biofilm formation
    - Local immunosuppression in insertion site

| Device                                  | Estimated no.<br>inserted in the<br>United States<br>per year | Rate of infection,% | Attributable<br>mortality <sup>a</sup> |
|-----------------------------------------|---------------------------------------------------------------|---------------------|----------------------------------------|
| Bladder catheters <sup>b</sup>          | >30,000,000                                                   | 10–30               | Low                                    |
| Central venous catheters <sup>b,c</sup> | 5,000,000                                                     | 3–8                 | Moderate                               |
| Fracture fixation devices <sup>b</sup>  | 2,000,000                                                     | 5–10                | Low                                    |
| Dental implants <sup>d</sup>            | 1,000,000                                                     | 5–10                | Low                                    |
| Joint prostheses <sup>b</sup>           | 600,000                                                       | 1–3                 | Low                                    |
| Vascular grafts <sup>b</sup>            | 450,000                                                       | 1–5                 | Moderate                               |
| Cardiac pacemakers <sup>b,d</sup>       | 300,000                                                       | 1–7                 | Moderate                               |
| Mammary implants, in pairs <sup>e</sup> | 130,000                                                       | 1–2                 | Low                                    |
| Mechanical heart valves <sup>a</sup>    | 85,000                                                        | 1–3                 | High                                   |
| Penile implants <sup>b,d</sup>          | 15,000                                                        | 1–3                 | Low                                    |
| Heart assist devices <sup>a</sup>       | 700                                                           | 25–50               | High                                   |

#### Table 1. The magnitude of the problem of device-associated infections.

<sup>a</sup> Semiquantitative scale for attributable mortality: low, <5%; moderate, 5%–25%; high, >25%.

<sup>b</sup> Numbers estimated by analysis of market reports.

<sup>c</sup> Numbers estimated by review of the medical literature.

<sup>d</sup> Numbers estimated by personal communication with personnel from device manufacturing companies.

<sup>e</sup> Numbers estimated by review of data provided by medical associations.

#### (Table 1, Weinstein and Darouiche, 2001)

### Introduction

- Current treatment of device-associated infection
  - High dose of antibiotics
    - Ineffective due to high tolerance and resistance to antibiotics of biofilm
    - Minimum biofilm inhibitory concentration (MBIC) usually higher than planktonic MIC
  - Last resort: Surgical replacement of the implanted devices
    - High cost and risk
    - High-chances of re-infection

### Introduction

- Alternative approach: Prevention of biofilm formation on implants
- Nanocoating
  - Application of nanomaterial of which one dimension at a nanoscale (1-100 nm) onto a surface
  - Advantages of nanomaterial
    - Different properties compared to bulk counterpart
    - High surface area-to-volume ratio, thus high reactivity and capacity
    - Possibility for modifications

### Strategies of nanocoatings to prevent biofilm formation



- Antifouling surface
  - Reduce and inhibit adhesion
  - Hydrophilic polymer
  - Zwitterionic polymer
  - Superhydrophobic surface

- Antimicrobial coating
  - Inhibit colonization
  - Metal-based nanoparticles

**Substrate** 

Cationic polymers

### Antifouling strategy – Hydrophilic polymers

- Electrically neutral materials process polar ether, hydroxyl, or amide groups
- Mechanism: Surface hydration
  - Form a water layer on surface by hydrogen bonds with water molecules
  - Physical and energetic barrier
  - Preventing host-protein adsorption and bacterial adhesion



### Antifouling strategy – Zwitterionic polymers

- Polymers with an identical number of negatively and positively charged groups
- Form hydration layer by ionic interactions
- High biocompatibility
- High stability against oxidation



(Fig. 5, Faustino et al., 2020)

- Xing et al., 2017
  - PEG and PMEN10 with polydopamine (PDA) intermediate layer
  - *in vitro* incubation of coated silicon wafers with platelet, BSA, bacterial suspensions
  - Both PEG and PMEN10 reduced fouling and (c bacterial cell adhesion and BSA adsorption



#### (Fig. 8, Xing et al., 2017)

### Antifouling strategy – Superhydrophobic surface

- Ultra low water adhesion
  - Lotus leaf effect
  - Self-cleaning property
- Hydrophobic surface + micropatterning
- Cassie-Baxter state
  - Water contact angle  $\theta > 90^{\circ}$
  - Reduced adhesion force





(Fig. 3, Faustino et al., 2020)

• Zhang et al., 2020



- Superhydrophobic coating on silicon catheter
- (Scheme 1, Zhang et al., 2020)
- Deposition of PDA and silver nanoparticles (AgNPs)
- Hydrophobic modification with 1*H*,1*H*,2*H*,2*H*-perfluorodecanethiol (PFDT)
- Water contact angle: 154.7°
- Compared with all silicon or silver-alloy-hydrogel-coated catheters

- Biofilm adhesion assay
  - Incubation of 2 cm of coated catheter with tryptic soy broth with *E. coli* or *P. mirabilis* for 2 days

• Dynamic flow model



(Scheme 2, Zhang et al., 2020)

 Inoculated artificial urine (AU) pumped through catheter for 7 days



Bacterial migration assay



(Fig 6, Zhang et al., 2020)

- Encrustation assay
  - In vitro bladder model with artificial urine
  - Time to blockage delayed from  $41.3 \pm 1.7$  to  $101.4 \pm 6.9$  hours

#### Antimicrobial strategy – Metal-based NPs

- Widely studied metal-based nanoparticles (NPs)
  - Gold (Au), and silver (Ag)
  - Magnesium oxide (MgO), copper oxide (CuO), titanium dioxide (TiO<sub>2</sub>), and zinc oxide (ZnO)
- Metal NPs outperform microscale counterparts

#### Antimicrobial strategy – Metal-based NPs

• Possible mechanisms of action



### Antimicrobial strategy – Metal-based NPs

- Zinc oxide (ZnO)
  - Low toxicities in mammalian cells
  - More effective at inhibiting biofilm formation and growth of *E. faecalis, S aureus, S. epidermidis, B. subtilis,* and *E. coli*
  - Ineffective to *P. aeruginosa* and *Proteus* due to resistance



• Biofilm inhibition on MRSA, Streptococcus mitis, P. aeruginosa, and Candida albicans

### Antimicrobial strategy – Cationic polymers

- Net positive charge
- Cationic groups on side chain or polymer backbone
  - Cationic centres including ammonium ions, sulfonium ions, phosphonium ions
- Proposed mechanism
  - 1. Adsorption and penetration of the cationic polymers into microbial cell well
  - 2. Reaction with cell membrane (lipid and protein components)
  - 3. Membrane disassembly
  - 4. Leakage of intracellular material
  - 5. Degradation of proteins and nucleic acids

(Francolini et al., 2017)

### Antimicrobial strategy – Cationic polymers

HO

- Chitosan
  - Derived from natural polymer
  - Composed of randomly distributed N-acetylglucosamine and D-glucosamine

- Low toxicity towards mammalian cells
- Antibacterial activity against Gram + and Gram bacteria

Chitin

Chitosan

(Fig 1, Boroumand et al., 2021)

Deacetylation

- Rubini et al., 2021
  - In-house extracted chitosan, coated onto silicon catheter
  - Incubated in *S. epidermidis* and *C. albicans* co-culture
  - Dose-dependent reduction of biofilm formation



(Fig 2, Rubini et al., 2021)

### Chitosan

- Nanocomposite with metal-based NP
  - Wang et al., 2012
    - Chitosan-Ag/PVP nanocomposite, coated on PET film
    - Eliminated 100% of *S. aureus* and *E.coli* in 10 ml of suspension (10^5 CFU/ml) in 5 min
    - Retained antimicrobial activity after submerging in PBS for 35 days
    - Reduced adhesion of bacteria
  - Pandiselvi and Thambidurai, 2015
    - Chitosan-ZnO/polyaniline nanocomposite
    - Reduced biofilm formation of *S. aureus* (97%), *P. aeruginosa* (95%), and *C. albicans* on coated glass slide

### Limitations of nanocoatings

- Antifouling coatings
  - Not biostatic or biocidal
  - Can be overwhelmed by high concentration of microbes
- Antimicrobials coatings
  - Different antimicrobial spectra
  - Active ingredients depletes gradually
  - Accumulation of debris of dead microbes
- Future trend Integrated strategies
  - Combination of antimicrobial NPs
  - Antifouling + antimicrobial coatings
  - Nanotopography

#### Take-home messages

- Colonization and biofilm formation of microbes on medical devices can cause device-associated infections
- Biofilms on medical devices are difficult to eradicate by antibiotics
- Nanocoatings can be used to prevent microbial colonization and biofilm formation on medical devices
- Antifouling nanocoatings repel protein and microbial adhesion
- Antimicrobial nanocoatings inhibit microbial colonization
- The future trend of development is multifunctional coatings with integrated strategies

# Q&A

### References

- 1. Balaure, P.C., and Grumezescu, A.M. (2020a). Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part I: Molecular Basis of Biofilm Recalcitrance. Passive Anti-Biofouling Nanocoatings. Nanomaterials *10*, 1230.
- 2. Balaure, P.C., and Grumezescu, A.M. (2020b). Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings. Nanomaterials *10*, 1527.
- 3. Boroumand, H., Badie, F., Mazaheri, S., Seyedi, Z.S., Nahand, J.S., Nejati, M., Baghi, H.B., Abbasi-Kolli, M., Badehnoosh, B., Ghandali, M., et al. (2021). Chitosan-Based Nanoparticles Against Viral Infections. Frontiers in Cellular and Infection Microbiology 11, 175.
- 4. Costerton, J.W., Stewart, P.S., and Greenberg, E.P. (1999). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.
- 5. Erkoc, P., and Ulucan-Karnak, F. (2021). Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies. Prosthesis *3*, 25–52.
- 6. Faustino, C.M.C., Lemos, S.M.C., Monge, N., and Ribeiro, I.A.C. (2020). A scope at antifouling strategies to prevent catheter-associated infections. Advances in Colloid and Interface Science 284, 102230.
- 7. Francolini, I., Vuotto, C., Piozzi, A., and Donelli, G. (2017). Antifouling and antimicrobial biomaterials: an overview. APMIS *125*, 392–417.
- 8. Khatoon, Z., McTiernan, C.D., Suuronen, E.J., Mah, T.-F., and Alarcon, E.I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon *4*, e01067.
- 9. Maali, Y., Journo, C., Mahieux, R., and Dutartre, H. (2020). Microbial Biofilms: Human T-cell Leukemia Virus Type 1 First in Line for Viral Biofilm but Far Behind Bacterial Biofilms. Front Microbiol *11*, 2041.
- Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J., et al. (2014). Multistate Point-Prevalence Survey of Health Care–Associated Infections. N Engl J Med 370, 1198–1208.

#### References

- 11. Pandiselvi, K., and Thambidurai, S. (2015). Synthesis, characterization, and antimicrobial activity of chitosan–zinc oxide/polyaniline composites. Materials Science in Semiconductor Processing *31*, 573–581.
- 12. Ramasamy, M., and Lee, J. (2016). Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices. BioMed Research International 2016, e1851242.
- 13. Robino, L., and Scavone, P. (2020). Nanotechnology in biofilm prevention. Future Microbiology 15, 377–379.
- 14. Rubini, D., Vedha Hari, B.N., and Nithyanand, P. (2021). Chitosan coated catheters alleviates mixed species biofilms of Staphylococcus epidermidis and Candida albicans. Carbohydrate Polymers *252*, 117192.
- 15. Shkodenko, L., Kassirov, I., and Koshel, E. (2020). Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms *8*, 1545.
- 16. Wang, B.-L., Liu, X.-S., Ji, Y., Ren, K.-F., and Ji, J. (2012). Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate Polymers *90*, 8–15.
- 17. Weinstein, R.A., and Darouiche, R.O. (2001). Device-Associated Infections: A Macroproblem that Starts with Microadherence. Clinical Infectious Diseases *33*, 1567–1572.
- 18. Xing, C.-M., Meng, F.-N., Quan, M., Ding, K., Dang, Y., and Gong, Y.-K. (2017). Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomaterialia *59*, 129–138.
- Yousaf, S., Alhnan, M.A., Abdallah, A., Abdallah, B., Khan, I., and Ahmed, W. (2015). Chapter 16 Nanocoatings in medicine: Antiquity and modern times. In Emerging Nanotechnologies for Manufacturing (Second Edition), W. Ahmed, and M.J. Jackson, eds. (Boston: William Andrew Publishing), pp. 418–443.
- 20. Zhang, S., Liang, X., Gadd, G.M., and Zhao, Q. (2020). Superhydrophobic Coatings for Urinary Catheters To Delay Bacterial Biofilm Formation and Catheter-Associated Urinary Tract Infection. ACS Appl. Bio Mater. *3*, 282–291.